-
Câu hỏi:
Chọn kết quả đúng trong các kết quả sau của \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {{x^4} - {x^3} + {x^2} - x} \) là:
-
A.
\({ - \infty }\)
-
B.
0
-
C.
1
-
D.
\({ - \infty }\)
Lời giải tham khảo:
Đáp án đúng: D
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to + \infty } \sqrt {{x^4} - {x^3} + {x^2} - x} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {{x^4}\left( {1 - \frac{1}{x} + \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}} \right)} \\
= \mathop {\lim }\limits_{x \to + \infty } {x^2}\sqrt {1 - \frac{1}{x} + \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}} = + \infty
\end{array}\)vì \(\mathop {\lim }\limits_{x \to + \infty } {x^2} = + \infty ,\mathop {\lim }\limits_{x \to + \infty } \sqrt {1 - \frac{1}{x} + \frac{1}{{{x^2}}} - \frac{1}{{{x^3}}}} = 1\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho cấp số nhân (un) có \({S_2} = 4;\,{S_3} = 13\). Biết u2 < 0, giá trị S5 bằng
- Cho cấp số nhân (un) có số hạng đầu u1 = 5 và công bội q = -2. Số hạng thứ 6 của (un) là:
- Tổng \(S = \frac{1}{3} + \frac{1}{{{3^2}}} + \cdot \cdot \cdot + \frac{1}{{{3^n}}} + \cdot \cdot \cdot \) có giá trị là:
- Một cấp số nhân có số hạng đầu ({u_1} = 3), công bội q = 2. Biết ({S_n} = 765). Thực hiện tìm n?
- Cho dãy số :\(-1 ; \frac{1}{3} ;-\frac{1}{9} ; \frac{1}{27} ;-\frac{1}{81}\) . Khẳng định nào sau đây là sai?
- Cho dãy số \(\left(u_{n}\right) \text { với }: u_{n}=2 n+5\). Khẳng định nào sau đây là sai?
- Cho dãy số \(\left(u_{n}\right) \operatorname{có}: u_{1}=-3 ; d=\frac{1}{2}\). Khẳng định nào sau đây là đúng?
- Cho dãy số \(\left(u_{n}\right) \text { có: } u_{1}=\frac{1}{4} ; d=\frac{-1}{4}\). Khẳng định nào sau đây đúng?
- Cho dãy số \(\left(u_{n}\right) \text { có } \mathrm{d}=-2 ; \mathrm{S}_{8}=72\), Tính \(u_1\)
- Cho dãy số \(\left(u_{n}\right) \text { có } d=0,1 ; S_{5}=-0,5\). Tính \(u_1\)?
- Xét tính bị chặn của các dãy số sau \(u_{n}=4-3 n-n^{2}\)
- Xét tính tăng, giảm và bị chặn của dãy số \(\left(u_{n}\right), \text { biết: } u_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}\)
- Cho dãy số (un) xác định bởi \({u_n}\; = \;{n^2}\;-\;4n\;-\;2\). Khi đó u10 bằng:
- Cho dãy số \({u_n}\; = \;1 + \;\left( {n\; + 3} \right){.3^n}\). khi đó công thức truy hồi của dãy là:
- Cho dãy số (un) xác định bởi : \(\left\{ {\begin{array}{*{20}{l}} {{u_1} = 1}\\ {{u_{n + 1}} = {u_n} + {n^2},\;n \ge 1} \end{array}} \right.\) Công thức của un+1 theo n là:
- Giá trị của \(C = \lim \;\frac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1} + n}}\) bằng:
- Giá trị của \(D = \;\lim \;\frac{{\sqrt {{n^2} + 1} - \sqrt[3]{{3{n^3} + 2}}}}{{\sqrt[4]{{2{n^4} + n + 2}} - n}}\) bằng:
- Giá trị của \(C = \lim \;\frac{{{{\left( {2{n^2} + 1} \right)}^4}{{\left( {n + 2} \right)}^9}}}{{{n^{17}} + 1}}\) bằng:
- Giá trị của (B = lim ;frac{{sqrt {{n^2} + 2n} }}{{n - sqrt {3{n^2} + 1} }}) bằng bao nhiêu?
- Giá trị của \(A = \lim \frac{{2{n^2} + 3n + 1}}{{3{n^2} - n + 2}}\) bằng:
- Tìm giới hạn \(B\; = \;\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} - 3x + 4} - 2x}}{{\sqrt {{x^2} + x + 1} - x}}\)
- Chọn kết quả đúng trong các kết quả sau của \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {{x^4} - {x^3} + {x^2} - x} \) là:
- Chọn kết quả đúng trong các kết quả sau của \(\mathop {\lim }\limits_{x \to - \infty } \left( {4{x^5} - 3{x^3} + x + 1} \right)\) là:
- Tìm giới hạn \(E = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x + 1} - x} \right)\)
- Cho hàm số như sau (fleft( x ight); = left( {x + 2} ight);sqrt {frac{{x - 1}}{{{x^4} + {x^2} + 1}}} ).
- Cho hai vectơ \(\vec{a}, \vec{b}\) thỏa mãn: \(|\vec{a}|=26 ;|\vec{b}|=28 ;|\vec{a}+\vec{b}|=48\). Độ dài vectơ \(\vec{a}-\vec{b}\)bằng?
- Trong không gian cho tam giác ABC . Tìm M sao cho giá trị của biểu thức \(P=M A^{2}+M B^{2}+M C^{2}\) đạt giá trị nhỏ nhất.
- Trong không gian cho tam giác ABC có trọng tâm G . Chọn hệ thức đúng?
- Cho tứ diện ABCD . Tìm giá trị của k thích hợp thỏa mãn \(\overrightarrow{A B} \cdot \overrightarrow{C D}+\overrightarrow{A C} \cdot \overrightarrow{D B}+\overrightarrow{A D} \cdot \overrightarrow{B C}=k\)
- Cho hai vectơ \(\vec{a}, \vec{b}\) thỏa mãn: \(|\vec{a}|=4 ;|\vec{b}|=3 ;|\vec{a}-\vec{b}|=4\). Gọi \(\alpha \) là góc giữa hai vectơ \(\vec{a}, \vec{b}\). Chọn khẳng định đúng?
- Cho tứ diện ABCD có , \(A B=C D=a, \mathrm{IJ}=\frac{a \sqrt{3}}{2}\) ( I J , lần lượt là trung điểm của BC và AD ). Số đo góc giữa hai đường thẳng AB và CD là :
- Cho tứ diện ABCD với \(A C=\frac{3}{2} A D, \widehat{C A B}=\widehat{D A B}=60^{\circ}, C D=A D\). Gọi \(\varphi\) là góc giữa AB và CD . Chọn khẳng định đúng ?
- Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD . Góc giữa AO và CD bằng bao nhiêu ?
- Cho tứ diện đều ABCD , M là trung điểm của cạnh BC . Khi đó \(\cos (A B, D M)\) bằng
- Cho hình chóp S.ABC có \(S A=S B=S C \text { và } \widehat{A S B}=\widehat{B S C}=\widehat{C S A}\) . Hãy xác định góc giữa cặp vectơ \(\overrightarrow{S A} \text { và } \overrightarrow{B C} ?\)
- Cho hình lập phương ABCD.ABCD có cạnh bằng a. Khoảng cách giữa BB và AC
- Cho hình lập phương \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\). Góc giữa AC và DA1 là?
- Cho tứ diện ABCD có \(A B=A C=A D \text { và } \widehat{B A C}=\widehat{B A D}=60^{0}\) . Hãy xác định góc giữa cặp vectơ \(\overrightarrow{A B} \text { và } \overrightarrow{C D} ?\)
- Cho \(\vec{a}=3, \vec{b}=5\) góc giữa \(\vec{a} \text { và } \vec{b}\) và bằng 120o. Chọn khẳng định sai trong các khẳng đính sau?
- Trong không gian cho hai tam giác đều ABC và ABC ' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh \(A C, C B, B C^{\prime} \text { và } C^{\prime} A\) . Hãy xác định góc giữa cặp vectơ \(\overrightarrow{A B} \text { và } \overrightarrow{C C^{\prime}} ?\)