OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho tứ diện \(ABCD\) có \(AB = x\,\,\left( {x > 0} \right)\), các cạnh còn lại bằng nhau và bằng \(4\). Mặt phẳng \(\left( P \right)\) chứa cạnh \(AB\) và vuông góc với cạnh \(CD\) tại \(I.\) Diện tích tam giác \(IAB\) lớn nhất bằng: 

    • A. 
      \(12\)     
    • B. 
      \(6\) 
    • C. 
      \(8\sqrt 3 \) 
    • D. 
      \(4\sqrt 3 \) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có các tam giác \(ACD\) và \(BCD\) là các tam giác đều vì các cạnh đều bằng 4.

    Gọi \(I\) là trung điểm của \(CD\) thì \(\left\{ \begin{array}{l}AI \bot CD\\BI \bot CD\end{array} \right. \Rightarrow CD \bot \left( {ABI} \right)\). Do đó mặt phẳng \(\left( P \right)\) chính là \(\left( {ABI} \right)\).

    Mặt khác ta có: \(AI,\,\,BI\) là các đường cao trong tam giác đều cạnh 4 nên \(AI = BI = 4.\dfrac{{\sqrt 3 }}{2} = 2\sqrt 3 \).

    \( \Rightarrow \Delta IAB\) cân tại \(I\).

    Gọi gọi \(H\) là trung điểm của \(AB \Rightarrow IH \bot AB\).

    Áp dụng định lí Pytago trong tam giác vuông \(BHI\) ta có:

    \(IH = \sqrt {I{B^2} - B{H^2}}  = \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - {{\left( {\dfrac{x}{2}} \right)}^2}}  = \sqrt {12 - \dfrac{{{x^2}}}{4}} \)

    Ta có: \({S_{\Delta IAB}} = \dfrac{1}{2}IH.AB = \dfrac{1}{2}\sqrt {12 - \dfrac{{{x^2}}}{4}} .x = \dfrac{x}{2}\sqrt {12 - \dfrac{{{x^2}}}{4}} \)

    Ta có: \(\dfrac{x}{2}\sqrt {12 - \dfrac{{{x^2}}}{4}}  \le \dfrac{{\dfrac{{{x^2}}}{4} + 12 - \dfrac{{{x^2}}}{4}}}{2} = 6\) , do đó \({S_{\Delta IAB}} \le 6\).

    Dấu “=” xảy ra \( \Leftrightarrow \dfrac{x}{2} = \sqrt {12 - \dfrac{{{x^2}}}{4}}  \Leftrightarrow x = 2\sqrt 6 \).

    Vậy diện tích tam giác \(IAB\) lớn nhất bằng \(6\) khi \(AB = x = 2\sqrt 6 \).

    Chọn B.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF