OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình chóp tam giác \(S.ABC\) có mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với mặt đáy.  Biết góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\) cạnh \(AB = 4cm;\,\,BC = 6cm;\,\,CA = 8cm\). Tính độ dài cạnh SA của hình chóp.

    • A. 
      \(\sqrt 5 \,cm\).
    • B. 
      \(2\sqrt 3 \,cm\).
    • C. 
      \(6\sqrt 3 \,cm\).
    • D. 
      \(3\sqrt 5 \,cm\).

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAC} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {SAC} \right) = SA\end{array} \right. \)\(\Rightarrow SA \bot \left( {ABC} \right)\).

    Xét tam giác \(ABC\) ta có

    \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}}\)\( = \frac{{{4^2} + {6^2} - {8^2}}}{{2.4.6}} =  - \frac{1}{4} < 0\)

    \( \Rightarrow \widehat B > {90^0}\)

    Trong \(\left( {ABC} \right)\) dựng \(AH \bot BC\,\,\left( {H \in BC} \right)\) ta có:

    \(\left\{ \begin{array}{l}BC \bot AH\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAH} \right)\)\( \Rightarrow BC \bot SH\).

    \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SH \bot \left( {ABC} \right)\\\left( {ABC} \right) \supset AH \bot \left( {ABC} \right)\end{array} \right.\)

    \( \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right)\) \( = \angle \left( {SH;AH} \right) = \angle SHA = {60^0}\) .

    Xét tam giác vuông \(AHB\) có \(BH = AB.\cos \angle ABH\)\( = 4.\frac{1}{4} = 1\).

    \( \Rightarrow AH = \sqrt {A{B^2} - B{H^2}} \)\( = \sqrt {{4^2} - {1^2}}  = \sqrt {15} \).

    Xét tam giác vuông \(SAH\) có : \(SA = AH.\tan {60^0}\)\( = \sqrt {15} .\sqrt 3  = 3\sqrt 5 \).

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF