OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho đồ thị của hàm số \(f\left( x \right)\) trên khoảng \(\left( {a;\,\,b} \right)\). Biết rằng tiếp tuyến của đồ thị hàm số \(f\left( x \right)\) tại các điểm \({M_1};\,\,{M_2};\,\,{M_3}\) như hình vẽ.

    Khi đó xét dấu \(f'\left( {{x_1}} \right)\,,f'\left( {{x_2}} \right)\,,f'\left( {{x_3}} \right)\).

    • A. 
      \(f'\left( {{x_1}} \right) = 0,\,\,f'\left( {{x_2}} \right) < 0,\,\,f'\left( {{x_3}} \right) > 0\). 
    • B. 
      \(f'\left( {{x_1}} \right) < 0,\,\,f'\left( {{x_2}} \right) > 0,\,\,f'\left( {{x_3}} \right) = 0\). 
    • C. 
      \(f'\left( {{x_1}} \right) < 0,\,\,f'\left( {{x_2}} \right) = 0,\,\,f'\left( {{x_3}} \right) > 0\). 
    • D. 
      \(f'\left( {{x_1}} \right) > 0,\,\,f'\left( {{x_2}} \right) = 0,\,\,f'\left( {{x_3}} \right) < 0\). 

    Lời giải tham khảo:

    Đáp án đúng: C

    - Tiếp tuyến tại \({M_1}\) là đường thẳng nghịch biến trên \(\mathbb{R}\) nên \(f'\left( {{x_1}} \right) < 0\).

    - Tiếp tuyến tại \({M_2}\) là đường thẳng song song với trục hoành nên \(f'\left( {{x_2}} \right) = 0\).

    - Tiếp tuyến tại \({M_3}\) là đường thẳng đồng biến trên \(\mathbb{R}\) nên \(f'\left( {{x_3}} \right) > 0\).

    Vậy \(f'\left( {{x_1}} \right) < 0,\,\,\,f'\left( {{x_2}} \right) = 0,\,\,f'\left( {{x_3}} \right) > 0\).

    Chọn C.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF