OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 19 trang 19 SBT Toán 11 Tập 2 Cánh diều - CD

Bài tập 19 trang 19 SBT Toán 11 Tập 2 Cánh diều

Chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương đầu tiên. Tính xác suất của các biến cố:

a) A: “Hai số được chọn là số chẵn”;

b) B: “Hai số được chọn là số lẻ”;

c) C: “Tổng của hai số được chọn là số chẵn”.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài tập 19

Mỗi cách chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương cho ta một tổ hợp chập 2 của 21 phần tử.

Do đó, không gian mẫu Ω gồm các phần tử chập 2 của 21 phần tử và \(n\left( \Omega \right) = C_{21}^2 = 210.\)

a) Ta thấy trong 21 số nguyên dương đầu tiên có 10 số chẵn.

Suy ra số các kết quả thuận lợi cho biến cố A là \(n\left( A \right) = C_{10}^2 = 45.\)

Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{45}}{{210}} = \frac{3}{{14}}.\)

b) Ta thấy trong 21 số nguyên dương đầu tiên có 11 số lẻ.

Suy ra số các kết quả thuận lợi cho biến cố B là \(n\left( B \right) = C_{11}^2 = 55.\)

Xác suất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{55}}{{210}} = \frac{{11}}{{42}}.\)

c) Ta thấy, tổng của hai số được chọn là số chẵn khi hai số đó phải cùng chẵn hoặc cùng lẻ.

Ta có: \(C = A \cup B,{\rm{ }}A \cap B = \emptyset \Rightarrow n\left( C \right) = n\left( A \right) + n\left( B \right).\)

Suy ra số các kết quả thuận lợi cho biến cố C là:

\(n\left( C \right) = n\left( A \right) + n\left( B \right) = 45 + 55 = 100.\)

Xác suất của biến cố C là: \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{100}}{{210}} = \frac{{10}}{{21}}.\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 19 trang 19 SBT Toán 11 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF