OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 16 trang 100 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 16 trang 100 SBT Toán 11 Tập 1 Cánh diều

Cho tứ diện \(ABCD\). Gọi \(M\), \(N\) lần lượt là trung điểm của các cạnh \(AB\), \(AD\) và \(P\) là một điểm nằm trên \(CD\). Đường thẳng \(BC\) cắt mặt phẳng \(\left( {MNP} \right)\) tại \(Q\). Chứng minh rằng \(PQ\parallel BD\)?

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài tập 16

Ta có: \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AD\).

Nên \(MN\) là đường trung bình của tam giác \(ABD\). Suy ra \(MN\parallel BD\).

Xét ba mặt phẳng \(\left( {MNP} \right)\), \(\left( {ABD} \right)\) và \(\left( {BCD} \right)\).

Ta có \(MN\) là giao tuyến của \(\left( {ABD} \right)\) và \(\left( {MNP} \right)\);

           \(PQ\) là giao tuyến của \(\left( {BCD} \right)\) và \(\left( {MNP} \right)\),

           \(BD\) là giao tuyến của \(\left( {ABD} \right)\) và \(\left( {BCD} \right)\).

Mà \(MN\parallel BD\), nên theo định lí về giao tuyến của ba mặt phẳng, ta suy ra \(PQ\parallel BD\).

Bài toán được chứng minh.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 16 trang 100 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF