OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 9.10 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT

Bài tập 9.10 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức

Cho hàm số \(f\left( x \right) = \frac{x}{{\sqrt {4 - {x^2}} }}\) và \(g\left( x \right) = \frac{1}{x} + \frac{1}{{\sqrt x }} + {x^2}\). Tính \(f'\left( 0 \right) - g'\left( 1 \right)\)?

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 9.10

Dùng quy tắc tính đạo hàm \(f'\left( x \right),\,\,g'\left( x \right)\) và thay giá trị tương ứng.

Ta có:

\(f'\left( x \right) = \frac{{\sqrt {4 - {x^2}} + \frac{{{x^2}}}{{\sqrt {4 - {x^2}} }}}}{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}} = \frac{4}{{\left( {4 - {x^2}} \right)\sqrt {4 - {x^2}} }}\)

\(g'\left( x \right) = - \frac{1}{{{x^2}}} - \frac{1}{{2x\sqrt x }} + 2x\).

Do đó, \(f'\left( 0 \right) = \frac{1}{2},\,\,g'\left( 1 \right) = \frac{1}{2}\) và \(f'\left( 0 \right) - g'\left( 1 \right) = 0\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 9.10 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF