Bài tập 9.13 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức
Cho hàm số \(f\left( x \right) = 4{\sin ^2}\left( {2x - \frac{\pi }{3}} \right)\). Chứng minh rằng \(\left| {f'\left( x \right)} \right| \le 8\) với mọi \(x \in \mathbb{R}\). Tìm \(x\) để \(f'\left( x \right) = 8\)?
Hướng dẫn giải chi tiết Bài 9.13
Ta có:
\(f'\left( x \right) = 8\sin \left( {2x - \frac{\pi }{3}} \right){\left( {\sin \left( {2x - \frac{\pi }{3}} \right)} \right)^\prime } \\= 8\sin \left( {2x - \frac{\pi }{3}} \right)\cos \left( {2x - \frac{\pi }{3}} \right){\left( {2x - \frac{\pi }{3}} \right)^\prime }\)
\( = 16\sin \left( {2x - \frac{\pi }{3}} \right)\cos \left( {2x - \frac{\pi }{3}} \right) \\= 8\sin \left( {4x - \frac{{2\pi }}{3}} \right)\)
Từ đó suy ra: \(\left| {f'\left( x \right)} \right| = 8\left| {\sin \left( {4x - \frac{{2\pi }}{3}} \right)} \right| \le 8,\,\,\forall x \in \mathbb{R}\).
\(f'\left( x \right) = 8 \Leftrightarrow \sin \left( {4x - \frac{{2\pi }}{3}} \right) = 1 \\\Leftrightarrow 4x - \frac{{2\pi }}{3} = \frac{\pi }{2} + k2\pi \\\Leftrightarrow x = \frac{{7\pi }}{{24}} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 9.11 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 9.12 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 9.14 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 9.15 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 9.16 trang 60 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.