OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Giải Bài 6 trang 56 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 6 trang 56 SGK Toán 11 Chân trời sáng tạo tập 1

Một người muốn mua một thanh gỗ đủ để cắt ra làm các thanh ngang của một cái thang. Biết rằng chiều dài các thanh ngang của cái thang đó (từ bậc dưới cùng) lần lượt là 45 cm, 43 cm, 41 cm,…, 31 cm.

a) Cái thang đó có bao nhiêu bậc?

b) Tính chiều dài thanh gỗ mà người đó cần mua, giả sử chiều dài các mối nối (phần gỗ bị cắt thành mùn cưa) là không đáng kể.

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 6

Phương pháp giải

‒ Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng tổng quát là: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

‒ Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) là: \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

 

Lời giải chi tiết

a) Theo đề bài ta có dãy số chỉ chiều dài các thanh ngang của cái thang đó là một cấp số cộng có số hạng đầu \({u_1} = 45\), số hạng cuối \({u_n} = 31\) và công sai \(d = - 2\).

Ta có:

\({u_n} = {u_1} + \left( {n - 1} \right)d \Leftrightarrow 31 = 45 + \left( {n - 1} \right).\left( { - 2} \right) \Leftrightarrow 31 = 45 - 2n + 2 \Leftrightarrow 2n = 16 \Leftrightarrow n = 8\)

Vậy cái thang đó có 8 bậc.

 

b) Chiều dài thanh gỗ mà người đó cần mua chính là tổng của 8 thanh ngang của cái thang đó.

Vậy chiều dài thanh gỗ mà người đó cần mua là:

\({S_8} = \frac{{8\left( {{u_1} + {u_8}} \right)}}{2} = \frac{{8\left( {45 + 31} \right)}}{2} = 304\left( {cm} \right)\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 6 trang 56 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF