Bài tập 7.25 trang 35 SBT Toán 11 Tập 2 Kết nối tri thức
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), tam giác \(SAD\) đều và nằm trong mặt phẳng vuông góc với mặt đáy \(\left( {ABCD} \right)\). Gọi \(H,M\) lần lượt là trung điểm của các cạnh \(AD\) và \(AB\).
a) Tính côsin của góc giữa đường thẳng \(SC\) và mặt đáy \(\left( {ABCD} \right)\).
b) Chứng minh rằng \(\left( {SMD} \right) \bot \left( {SHC} \right)\).
Hướng dẫn giải chi tiết Bài 7.25
a) Ta có: \(\left( {SAD} \right) \bot \left( {ABCD} \right)\) và \(SH \bot AD\).
Nên \(SH \bot \left( {ABCD} \right)\).
Suy ra góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng góc giữa hai đường thẳng \({\rm{SC}}\) và \({\rm{CH}}\).
Mà \(\left( {{\rm{SC}},{\rm{CH}}} \right) = \widehat {{\rm{SCH}}}\).
Ta tính được \(SH = \frac{{a\sqrt 3 }}{2},HC = \frac{{a\sqrt 5 }}{2}\) và \(SC = a\sqrt 2 \).
Do đó \({\rm{cos}}\widehat {SHC} = \frac{{HC}}{{SC}} = \frac{{\sqrt {10} }}{4}\).
b) Ta có \(DM \bot CH,DM \bot SH\) nên \(DM \bot \left( {SCH} \right)\).
Hơn nữa, mặt phẳng (SDM) chứa đường thẳng \(DM\) nên \(\left( {SDM} \right) \bot \left( {SCH} \right)\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.