OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 2.20 trang 37 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 2.20 trang 37 SBT Toán 11 Tập 1 Kết nối tri thức

Nếu p, m và q lập thành một cấp số cộng thì dễ thấy \(m = \frac{{p + q}}{2}\). Số m gọi là trung bình cộng của p và q. Cho hai số p và q, nếu ta tìm được k số khác \({m_1},{m_2},...,{m_k}\) sao cho \(p,{m_1},{m_2},...,{m_k},q\) lập thành một cấp số cộng, chúng ta nói rằng ta đã “chèn k trung bình cộng vào giữa p và q”.

a) Hãy chèn ba trung bình cộng vào 4 và 12.

b) Tìm bốn trung bình cộng nằm giữa 16 và 91

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 2.20

a) Theo định nghĩa, chèn ba trung bình cộng vào giữa 4 và 12 thì ta được cấp số cộng có \({u_1} = 4\) và \({u_{2 + 3}} = {u_5} = 12.\) Theo tính chất của cấp số cộng nên \({u_5} = {u_1} + 4d \Rightarrow d = 2\).

Vậy chèn ba trung bình cộng vào giữa 4 và 12 ta được cấp số cộng là 4, 6, 8, 10, 12.

b) Theo định nghĩa, chèn bốn trung bình cộng vào giữa 16 và 91 thì ta được cấp số cộng có \({u_1} = 6\) và \({u_{2 + 4}} = {u_6} = 91.\) Theo tính chất của cấp số cộng nên \({u_6} = {u_1} + 5d \Rightarrow d = 15\).

Vậy chèn bốn trung bình cộng vào giữa 16 và 91 ta được cấp số cộng là 16, 31, 46, 61, 76, 91.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 2.20 trang 37 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF