OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Một con lắc đơn đang dao động điều hòa với biên độ góc \({\alpha _0}\) tại một nơi có gia tốc trọng trường là \(g\). Biết lực căng dây lớn nhất bằng \(1,02\) lần lực căng dây nhỏ nhất. Tính biên độ góc \({\alpha _0}\).

  bởi Lê Tấn Thanh 17/12/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Tại vị trí li độ góc \(\alpha \):

    \(\begin{array}{l}\left\{ \begin{array}{l}{{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\\{{\rm{W}}_d} = mgl(\cos \alpha  - \cos {\alpha _0})\end{array} \right.\\ \Rightarrow v = \sqrt {2gl(\cos \alpha  - \cos {\alpha _0})} \end{array}\)

    Áp dụng định luật II Niuton:

    \(\overrightarrow T  + \overrightarrow P  = m\overrightarrow a \)

    Chiếu theo phương hướng tâm:

    \(\begin{array}{l}T - P\cos \alpha  = m{a_{ht}} = m\dfrac{{{v^2}}}{l}\\ \Leftrightarrow T = P\cos \alpha  + m\dfrac{{{v^2}}}{l}\\= mg\cos \alpha  + 2mg(\cos \alpha  - \cos {\alpha _0})\\= mg(3\cos \alpha  - 2\cos {\alpha _0})\end{array}\)

    \(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}{T_{\max }} = mg(3 - 2\cos {\alpha _0})(VTCB)\\{T_{\min }} = mg\cos {\alpha _0}(VTB)\end{array} \right.\\ \Rightarrow \dfrac{{{T_{\max }}}}{{{T_{\min }}}} = \dfrac{{3 - 2\cos {\alpha _0}}}{{\cos {\alpha _0}}} = 1,02\\ \Rightarrow \cos {\alpha _0} = 0,99 \Rightarrow {\alpha _0} = 0,115(rad)\end{array}\)

      bởi Lan Anh 17/12/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF