OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy viết phương trình của mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\): 2x – y + 3z + 4 = 0.

Hãy viết phương trình của mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\): 2x – y + 3z + 4 = 0.

  bởi can chu 25/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Trục Oy có VTCP \(\overrightarrow j  = (0;1;0)\)

    Mặt phẳng \((\alpha ): 2x – y + 3z + 4 = 0\) có VTPT \(\overrightarrow {{n_\alpha }}  = (2; - 1;3)\)

    Mặt phẳng \((\beta )\) song song với trục Oy và vuông góc với mặt phẳng \((\alpha )\)

    \( \Rightarrow \left\{ \begin{array}{l}
    \overrightarrow {{n_\beta }} \bot \overrightarrow {{n_\alpha }} \\
    \overrightarrow {{n_\beta }} \bot \overrightarrow j
    \end{array} \right. \Rightarrow \overrightarrow {{n_\beta }} = \left[ {\overrightarrow j ;\overrightarrow {{n_\alpha }} } \right]\)

    Suy ra \((\beta )\) có vecto pháp tuyến là \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow j ;\overrightarrow {{n_\alpha }} } \right] = (3;0; - 2)\)

    Mặt phẳng \((\beta )\) đi qua điểm M(2; -1; 2) có vecto pháp tuyến là: \(\overrightarrow {{n_\beta }}  = (3;0; - 2)\)

    Vậy phương trình của \((\beta )\) là:  3(x – 2) – 2(z – 2) = 0  hay 3x – 2z – 2 = 0.

      bởi hai trieu 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF